Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation

نویسنده

  • Patrick Gérard
چکیده

In this paper, we prove the nonlinear orbital stability of the stationary traveling wave of the one-dimensional Gross-Pitaevskii equation by using Zakharov-Shabat’s inverse scattering method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traveling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one

We study the traveling waves of the Nonlinear Schrödinger Equation in dimension one. Through various model cases, we show that for nonlinearities having the same qualitative behaviour as the standard Gross-Pitaevkii one, the traveling waves may have rather different properties. In particular, our examples exhibit multiplicity or nonexistence results, cusps (as for the Jones-Roberts curve in the...

متن کامل

Asymptotic Axisymmetry of the Subsonic Traveling Waves to the Gross-pitaevskii Equation

In this note we show the asymptotic axisymmetry of subsonic traveling waves of finite energy to the Gross-Pitaevskii equation. In particular, using a new Hamiltonian identity, we prove that the momentum in the orthogonal directions must vanish.

متن کامل

Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity

We study the stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity obtained via a constrained variational approach. Two important physical models are Gross-Pitaevskii (GP) equation and cubic-quintic equation. First, under a non-degeneracy condition we prove a sharp instability criterion for 3D traveling waves of (GP), which had been conjectured in the...

متن کامل

Vortex Helices for Inhomogeneous Gross-Pitaevskii Equation in Three Dimensional Spaces

We construct traveling wave solutions with a stationary or traveling vortex helix to the inhomogeneous Gross-Pitaevskii equation iΨt = 4Ψ + ( W (y)− |Ψ| ) Ψ, where the unknown function Ψ is defined as Ψ : R3 × R → C, is a small positive parameter and W is a real smooth potential with symmetries.

متن کامل

Minimal Energy for the Traveling Waves of the Landau-Lifshitz Equation

We consider nontrivial finite energy traveling waves for the Landau–Lifshitz equation with easyplane anisotropy. Our main result is the existence of a minimal energy for these traveling waves, in dimensions two, three and four. The proof relies on a priori estimates related with the theory of harmonic maps and the connection of the Landau–Lifshitz equation with the kernels appearing in the Gros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008